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Bi-partite entanglement: entanglement entropy   

A 
Σ S(Σ) = −TrρA log ρA

(will focus on vacuum) 



Entanglement entropy 

 dominated by short-distance physics 

•   ill-defined in the continuum limit: Divergent for a renormalizable QFT 

•   Long range correlations hard to extract. 

“unpleasant” features: 

S(Σ) ∝ AΣ

δd−2
+ · · ·

δ : Short-distance cutoff 

R 
Expect it to depend on physics at  
length scales ranging from size R all  
the way to short-distance cutoff    .   δ

(Bombelli et al, Srednicki) 

Even in the large R limit, still sensitive to all the shorter-distance d.o.f., not clear it 
will reduce to the behavior of the IR fixed point. 



Common practice: 

Even after the subtraction, could still depend on 
physics at scales much smaller than the size of the 
entangled region. 

subtract the UV divergent parts by hand,  often 
ambiguous (e,g. typically not invariant under 
reparametrizations of the cutoff) 

Note: entanglement entropy cannot be defined in terms of  
operators, standard QFT techniques of renormalization do 
not apply.   



Free massive fields 
Consider a free massive scalar field for a spherical region  
in the regime mR >> 1 in d=3: 

The finite part diverges linearly in R and does not have a 
well defined limit in the large R limit. 

Sscalar(mR) = #
R

δ
− π

6
mR− π

240

1

mR
+ · · ·

Herzberg and Wilczek, Huerta 

At long distances, the system contains nothing.  

Ideally, we would have liked to have the EE to go to zero.   

•  Some short-distance physics (1/m) remaining 

•  ambiguous: can be changed by δ → δ(1 +mδ + · · · )



Would like to be able to directly probe entanglement  
relations at a given scale. 

Entanglement entropy (even after subtracting the divergences)  
contains too much short-distance “junk”   

Would like to understand how entanglement correlations  
change with scale:  RG flow of entanglement. 

It turns out an almost trivial procedure goes some distance 
toward these goals.   



•   Introduce Renormalized entanglement entropy  

Plan 

   “track” the number of degrees of freedom of 
the system at a given scale.  

  characterize quantum entanglement at a given 
scale.  

  reveal new features of renormalization group flows: 
holographic examples 

  UV finite, well-defined in the continuum limit 



“Renormalized entanglement entropy” 
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For any entangling (smooth) surface      with a scalable size R:  Σ

S2(R) = R
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Divergence structure of entanglement entropy 

S(Σ)
div =

�

Σ
dd−2σ

√
hF (Kab, hab)

S(Σ)
div = a1R

d−2 + a2R
d−4 + · · ·

 The divergent part of EE should only depend on local physics 
at the cutoff scale near the entangling surface,  

h: induced metric, 
K: extrinsic curvature 

F: sum of all possible geometric invariants 

Grover, Turner,  Vishwanath;   HL and Mezei 

Renormalizability: No negative powers of R. 

a1,a2 : divergent coefficients, in general complicated functions 
of dimensional parameters of a system. 

(scalable surface) 

S(Σ)
div = S(Σ̄)

div



UV finiteness  
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Given:  S(Σ)
div = a1R

d−2 + a2R
d−4 + · · ·

will then get rid of all UV divergent terms for any QFT.  

The differential operator also gets rid of finite terms of the  
same R-dependence. 

Such terms can be modified by redefining the cutoff, thus  
not well defined in the continuum limit (“contaminated”). 

S(Σ)
d (R) is thus UV finite, and unambiguous (independent of  

reparametrizations of the cutoff).  



CFT 

S(Σ)
d (R) = s(Σ)

d

For a scale invariant system, we must have: 

S(Σ) =
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Converting it back to the EE itself, we then have  

This agrees with what was previously found from holographic 
 calculations. (Ryu, Takayanagi) 

s(Σ)
d is the “universal” part of the entanglement entropy.  



General QFTs 

In the small R limit:  

S(Σ)
d (R) → s(Σ,UV)

d , R → 0

S(Σ)(R) → S(Σ,UV), R → 0

S(Σ)
d (R) → s(Σ,IR)

d , R → ∞

1

µ1
,
1

µ2
, · · · � δ � RIntroducing a floating cutoff     :    δ

Contains mass parameters:  µ1, µ2, · · ·

1

µ

In the large R limit: 
�
R � 1

µ1
,
1

µ2
, · · ·

� S(Σ)(R)                  depends on physics at all 
scales from      to R including µ1, µ2, · · ·δ0

It is most sensitive to degrees of freedom at  scale R.   



Summary 

•  UV finite, well-defined in the continuum limit 

•  R-independent for a scale invariant system S(Σ)
d (R) = s(Σ)

d

•  For a general  
  quantum field theory S(Σ)
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.
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Note: definition not unique, simplest  

S(Σ)
d (R) can be interpreted as characterizing  

entanglement at scale R.  
The R-dependence can be interpreted as describing the “RG”  
flow of entanglement entropy with distance scale. 



Gapped systems 
For a free massive scalar field for a spherical region  
in the regime mR >> 1 in d=3: 

Sscalar(mR) = #
R

δ
− π

6
mR− π

240

1

mR
+ · · ·

Sscalar(mR) = +
π

120

1

mR
+ · · · → 0

In odd d, for generic gapped systems, we expect: (e.g. d=3)  

S(Σ)
3 (R) → γ, R → ∞ γ : Topological entanglement  

entropy 
(Kitaev, Preskill; Levin, Wen) 

In even d: S(Σ)
2n (R) → 0, R → ∞, n = 1, 2, · · ·
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An application: non-Fermi liquids 
For a system with a Fermi surface, expect at large R:   

S(Σ)
d (R) ∝ AFS ∝ kd−2

F

S(Σ)
d (R) ∝ kd−2

F Rd−2 ∝ AFSAΣ, R → ∞

SΣ(R) ∼ kd−2
F Rd−2 log(kFR) ∼ AFSAΣ log(AFSAΣ)

Similarly for higher co-dimensional Fermi surfaces: 

S(Σ)
d (R) ∝ (kFR)d−n

SΣ(R) ∝
�
(kFR)d−n log(kFR) n even

(kFR)d−n n odd

Wolf; Gioev, Klich 
Swingle,  

(independent whether the system has  
quasiparticles or not)  



Renyi entropy 

One can similarly define “renormalized Renyi entropies.”  

All the earlier discussions also apply to the renormalized  
Renyi entropies including log-enhancement for a  
non-Fermi liquid.  

Sn(A) =
1

1− n
log TrρnA



Entropic function in theory space 

C(Σ)(ga(Λ)) ≡ S(Σ) (RΛ, ga(Λ))
��
R= 1

Λ
= S(Σ) (1, ga(Λ))

From REE, one can introduce an “entropic function” defined 
in the space of couplings: 

Λ : RG scale

Λ
dC(Σ)(ga(Λ))

dΛ
= −R

dS(Σ) (RΛ, ga(Λ))

dR

����
R= 1

Λ



Application: EE and the number of d.o.f. 

Expect the tendency is for it to decrease with R.  

RG: integrating out degrees of freedom  

S(Σ)
d (R)Could                  track the loss of d.o.f.? 

R
dS(Σ)

d (R)

dR
< 0 ?If 

Given  S(Σ)
d (R) →

�
s(Σ,UV)
d R → 0

s(Σ,IR)
d R → ∞

.

s(Σ,UV)
d > s(Σ,IR)

d
i.e. a c-theorem. 

s(Σ)
d : central charge S(Σ)

d (R) : central function 



d=2 
S2(R) = R

dS

dR

S2 =
c

3
For a CFT 

Casini and Huerta 

S2(R) monotonic alternative proof of  
Zamolodchikov’s c-theorem 

For Lorentz-invariant, unitary QFTs 

Holzhey, Larsen, Wilczek 

using strong subadditivity condition. 



Higher dimensions 
now depends on the shape of     .  S(Σ)

d (R) Σ

Will all shapes work? 

d=4: for a CFT 

s(Σ)
4 = 2a4

�

Σ
d2σ

√
hE2 + c4

�

Σ
d2σ

√
h I2

s(sphere)4 = 4a4I2 vanishes for sphere,  

a4,c4 : coefficients of trace anomaly  

For a general shape,  will be a combination of a and c.  

Thus only for a sphere, do we always have 

Solodukhin 

s(Σ,UV)
4 > s(Σ,IR)

4



Higher dimensions 

For all even spacetime dimensions:  

s(sphere)2n = 4a2n

For all odd dimension:  s(sphere)d = (logZ)finite

: finite part of the Euclidean partition for the 
CFT on Sd 

(logZ)finite

Myers, Sinha 
Casini, Myers, Heurta 

Casini, Myers, Heurta 

Cardy,  
Myers, Sinha 
Jefferis, Klebanov, 
 Pufu and Safdi 

now depends on the shape of     .  S(Σ)
d (R) Σ

Sphere has the best chance  

Sd(R) (for a sphere) if monotonic, 

Lead to the conjectured a-theorem or F-theorem  
in all dimensions 



d=3 
S3(R) = R

dS

dR
− S

Free massive scalar and various holographic examples: 

S3(R) monotonically decreasing with R  
and non-negative  

Monotonicity  S��(R) < 0

Conjecture: 

Casini and Huerta have given a  proof shortly after  (1202.5650). 

But the conjecture of  non-negativeness apperas open. 

for all Lorentz invariant, unitary QFTs 



d=4 

Various 
holographic 
examples: 

neither monotonic  
nor non-negative  

S4(R) =
1

2

�
R2 d

2S

dR2
−R

dS

dR

�

S4(R)

Nevertheless S4(R → 0) > S4(R → ∞) from a-theorem 

R3∂3
RS +R2∂2

RS < R∂RS
not clear it could arise 
from the strong 
subadditivity condition.  

•  the function form should be modified 

•  Monotonicity of        or its improvement would imply  
an inequality for S with least three derivatives. 

S4



Application: new perspectives on   
renormalization  group flows 

Strategy: use Ryu-Takayanagi prescription to compute  
renormalized entanglement entropy (for a sphere) in QFTs with 
a gravity dual. 

Asymptotic behavior near a UV fixed point (small R behavior) ? 

Asymptotic behavior near an IR fixed point (large R behavior) ? 

Any interesting behavior along the flow ? 



Zoo of holographic systems 

The RG flow of a Lorentz-invariant holographic system in the 
vacuum:  

ds2 =
L2

z2

�
−dt2 + d�x2 +

dz2

f(z)

�
f(z) → 1, z → 0

1. IR fixed point: 

f(z) → L2

L2
IR

≡ f∞ > 1, z → ∞

2. Singular geometries: 

f(z) = azn + · · · , a > 0, n > 0



Behavior near a UV fixed point  

Sd(R) = s(UV)
d −A(α)(µR)2α + · · ·For small R  

α = d−∆

g: least relevant coupling  

See also Klebanov, Nishioka, Pufu, Safdi 

In all holographic theories: 

A(α) > 0

∆ : dimension of least relevant operator 

Cd(g) = s(UV)
d −A(∆)g2eff (Λ)

free scalar : S2(R) =
1

3
+

1

log (m2R2)
+ · · ·

However, in d=2:  

Dirac fermion : S2(R) =
1

3
− 4m2R2 log2

�
m2R2

�
+ · · ·

Casini, Huerta 

Non-analytic behavior for free scalar in d=3 Klebanov, Nishioka, 
Pufu, Safdi 



Behavior near an IR fixed point  

For large R 

Sd(R) = s(IR)
d +

B(α̃)

(µ̃R)2α̃
+ · · ·

∆ Dimension of leading  
irrelevant operator 

∼ s
(IR)
d +O(g2)

B(α̃) > 0

HL, Mezei 

α̃ <

�
1
2 odd d

1 even d

α̃ = ∆− d

For  

B(α̃) =
1

(1− 2α̃)f3/2
∞

(d=3) 



Behavior near an IR fixed point  

Sd(R) = s(IR)
d +

�
#
R + · · · odd d
#
R2 + · · · even d

HL, Mezei 

γ =

�
α̃−1 odd d
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< 2
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∆ Dimension of leading  
irrelevant operator 
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 (d=3) 

Cd(g) = s(IR)
d + Cgγ



Entanglement entropy provides  a sensitive probe of 
aspects of RG flow.  

∆ >

�
3.5 d = 3

5 d = 4

Physical reason: remnant UV sensitivity 



Understanding singular geometries 

ds2 =
L2

z2

�
−dt2 + d�x2 +

dz2

f(z)

�

f(z) = azn + · · · , a > 0, n > 0

n>2: Sd(R) =

�
1
R + · · · d odd
1
R2 + · · · d even

gapped systems  

n<2:  Additional terms non-analytic powers in R 

contain gapless modes 

n=2:  Gap plus a continuum 



“Phase transitions”  
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GPPZ flow 

d=4 

(Girardello, Petrini, 
Porrati,Zaffaroni) 

2nd order  
transition 

1st order  
transition 

2nd order  
transition 

d=3 

See also Klebanov, 
Nishioka, Pufu,Safdi 



“Phase transitions”  
These are non-analytic behavior in entanglement entropy as 
a function of size for the vacuum of a Lorentz invariant QFT. 

Nishioka and Takayanagi 
Klebanov, Kutasov, Murugan 
 Pakman, Parnachev 
Headrick 
Albash and Johnson…. 

These phase transitions should tell us “something” about  
RG flow of a system.  

It appears to happens when a flow is “fast” 

Large N artifact? 



2nd order phase transitions 
involving topology change 

z = 0

z → ∞

ρ

R1 R2

R1 < Rc < R2

Rc



For any renormalizable quantum field theory (not necessarily  
Lorentz-invariant),  “renormalized entanglement entropy:” 

Summary 

•   for d=2,3, c-function, gives a measure of the 
number of degrees of freedom of the system at 
a given scale  (with Lorentz symmetry)  

•  characterize quantum entanglement at a given 
scale.  

•  Reveal some surprising features of RG flow 



Thank You ! 


